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Abstract—Matching taxi supply with demand is one of the
biggest challenges faced by taxi fleet operators today. One of the
reasons why this problem is so hard to solve is because there are
no readily available methods to infer unmet taxi demand from
data. An algorithm that reliably does so would be of enormous
value to fleet operators because it could be used to dispatch
available taxis to areas where passenger demand greatly exceeds
supply. In this paper, we formally define unmet taxi demand
and develop a heuristic algorithm to quantify it. We explain
how our method improves on traditional approaches and present
the theoretical details which underpin our algorithm. Finally, we
develop a smartphone application that uses our algorithm together
with a live taxi data feed to provide real time recommendations
to participating drivers and efficiently route taxis to where they
are needed most.

I. INTRODUCTION

In this paper we describe a heuristic algorithm for inferring
unmet passenger demand for taxis (“unmet demand”) from
data. Matching taxi supply with demand is one of the biggest
challenges faced by taxi fleets worldwide. In Taiwan, it is
estimated that taxis in the capital Taipei spend more than a third
of their driving time empty looking for customers [1] while
in Singapore, it is not uncommon for taxis to spend hours in
queue waiting for a fare at the airport [2]. Despite this, there is a
significant imbalance of supply and demand in both these cities
particularly during peak periods, often resulting in unacceptably
high waiting times for passengers [3]. One possible explanation
is that taxi drivers as a group do not know where and when
to find passengers and so spend time unproductively cruising
empty or waiting in queue [4]. To help these taxi drivers find
passengers more efficiently and identify areas where taxis are
needed, we have developed an algorithm that uses real time taxi
probe data to infer areas of high unmet demand. Our algorithm
is able to do this without any information on passenger queue
lengths or arrival rates.

We measure unmet taxi demand by the quantity U , which is
the answer to the question: “How many more taxis are needed
in an area to completely satisfy all taxi demand for a given
period of time?” The relationship between unmet demand U ,
the number of observed passenger boardings B and demand D
is governed by the following equation:

D −B = U ≥ 0 (1)

Note that by our definition, U is always a non-negative
integer and that we make a distinction between D, the true
(but unknown) demand for taxi service and B, the number of
passenger boardings observed from data. For example, consider

Fig. 1. A taxi queue with high unmet taxi demand, U . Because passenger
demand for taxis is much greater than supply, the observed demand B (the
number of boardings) underestimates the actual demand for taxis, D.

a situation where you observe a hundred people at an isolated
taxi stand and that within an hour, only five taxis passed by to
pick up passengers (Figure 1). If you only counted boardings,
you would mistakenly conclude that demand for taxis at this
taxi stand was only five passengers per hour, when in fact it was
much greater. The only time we can be absolutely confident of
estimating U is when U = 0, implying that D = B i.e. taxis
were in such abundance that the number of observed boardings
is indicative of actual demand.

We can also describe U = D − B as the residual queue
length of people at the taxi stand i.e. the number of people
who needed a taxi less the number of people who eventually
found one . Similarly, the the residual queue length of taxis
is the supply of taxis S less the number of taxis that found a
passenger B.

We want to infer U from data. Our approach borrows
heavily from queueing theory, particularly the observation that
at equilibrium, the quantity of service supplied will be greater or
equal to the equilibrium quantity demanded by a certain amount
of slack [5]. When there is little slack relative to demand, the
residual queue length of people is much larger than the residual
queue length of taxis. Since the number of people that are
matched with a taxi, B, is the same as the number of taxis
that are matched with people (also B), we can say that when
unmet demand U is large:



U = D −B � S −B =⇒ D � S =⇒ D

S
� 1 (2)

U

S −B
=
D −B
S −B

=
D

S −B
− B

S −B
(3)

The ratio D
S is known as the utilization of a queueing system.

Rather than calculate U directly, we observe from (2) and (3)
that when U is large, D

S is also large as is D
S−B , the ratio of

demand to the residual queue length of taxis.
In Section V, we use this to approximate U by defining a

quantity ρ, the ratio of taxi demand to excess supply per unit
time and prove that it is a constant multiple of D

S−B . The rest of
the paper is organized as follows. We describe the data we use
for this study in Section III. Section IV introduces the problem
setup, defines notation and states assumptions that allow us
to use taxi probe data to estimate unmet demand. Section VI
applies our heuristic using real world taxi data from Singapore.
Finally in Section VII, we propose a service model and use our
unmet demand algorithm to develop a smartphone application
that uses a live data feed to provide real time recommendations
to participating taxi drivers.

The main contributions of this paper are:
• a survey of current methods and strategies that take a data

driven approach to taxi optimization
• a formal definition of unmet taxi demand and an algorithm

to estimate it
• a rigorous analysis of the theoretical details which under-

pin our algorithm
• the development of an online recommendation engine and

smartphone application that directs taxi drivers to areas of
high unmet demand

II. RELATED WORK

Measuring unmet demand is particularly important to transit
agencies because this information is used to inform taxi li-
censing policy. Traditionally, this data has been collected using
surveys conducted by human observers who would position
themselves at taxi stands to measure passenger wait times and
queue lengths. For example in the UK, unmet taxi demand
surveys taken in Cornwall [6] and Dundee [7] were used to
help policy makers decide if they should permit new taxi regis-
trations while in Hong Kong, the Department of Transportation
has been conducting annual taxi surveys since the 1980s with
the aim of ensuring that the number of new taxi licenses issued
keeps up with demand [8]. In response to public feedback
that taxis were more difficult to find despite supply increasing
by almost 50% since 2003 [9], the Singapore Land Transport
Authority (LTA) commissioned monthly surveys of passenger
wait times at selected taxi stands in the central business district
[10]. More recently, the LTA embarked on a pilot program to
install video cameras at seven taxi stands that would use image
recognition to count the number of passengers in queue [11].

These methods are popular because they present an admin-
istratively simple way for agencies to obtain ground truth data

but as noted in [12], they are are costly, time-consuming and
limited to small sample sizes. In contrast, by using individual
taxis as a distributed network of sensors, we are able to infer
unmet demand at any arbitrary location with sufficient taxi
activity without the use of expensive fixed equipment or human
surveyors.

Historically, our problem of matching taxi supply and de-
mand has been examined through the lens of combinatorial
optimization, where it falls within the general class of dynamic
pickup and delivery problems in which people or objects have
to be collected and delivered in real time [13] [14]. Because
this problem is NP-hard [15], heuristic solutions are needed.
[16] used simulated annealing to maximize customer utility and
minimize fleet operating costs while [17] designed a branch
and cut algorithm to return a minimum-cost set of vehicle
routes that satisfies all user requests under time constraints.
Since these problems are typically solved using mathematical
programming, they scale poorly [18], making them unsuitable
for solving large fleet assignment problems in real time.

Another way to frame taxi supply and demand matching is
to view it as a rebalancing problem in a networked, mobility on
demand system where we model passenger locations as nodes
and taxis as vehicles that drive autonomously from one delivery
location to the next according to some global rebalancing
policy. Such studies emphasize formally characterizing the
fundamental performance limits of such systems and devising
dynamic routing strategies with provable performance guar-
antees [19]. For example, [20] developed a provably optimal
rebalancing policy that minimized the number of empty vehicle
(rebalancing) trips while ensuring that the number of waiting
customers remained bounded and [21] developed a systematic
approach to size a fleet of shared, automated vehicles based on
actual mobility patterns in a city.

These studies work well in the context of a robotic fleet of
autonomous vehicles which collaborate to maximize aggregate
quality of service, but they do not capture the dynamics of real
world taxi fleets where drivers compete with one another to
maximize individual utility and earning power.

More recently, the availability of data collected from onboard
GPS devices has made it possible to analyze and understand the
movements of taxi fleets at scale. This new body of research
falls into two groups. The first focuses on using real world data
to build theoretical models of personal mobility [22], [23], with
a special emphasis on epidemiology [24]–[26], city planning
[27] and the role that taxies can play in supporting public
transportation [28], [29]. The second seeks to develop data
driven decision support tools that enable taxi drivers to operate
more efficiently. It is this second group that is most similar to
our work. [2] used queueing theory to combine flight arrival
with taxi supply data to predict passenger demand for taxis
at different airport terminals in Singapore while [30] used k-
means clustering to describe the spatiotemporal structure of
the taxi demand on Jeju Island, South Korea. Other strategies
include stable matching to optimally assign taxis to passengers
[31], computing dynamic patrolling loops that minimize the
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distance driven by taxi drivers to get to their next customer [32]
and employing ensemble time series forecasting techniques to
predict near term taxi demand [33].

In developing recommendation systems for taxi drivers, each
of the above trained their demand predictions on observed
demand - the number of people who board a taxi B, not
the number of taxis needed D. As we explained in Section
I, observed demand B is only equal to true demand D when
the number of available taxis in an area is greater than or equal
to the number of boardings. Advising taxi drivers to avoid a
low B area may not be optimal if B is low precisely because
taxi supply is limited. This is analogous to asking taxi drivers
to give a taxi stand with many waiting passengers and very
few taxis a miss. To the best of our knowledge, our approach
of targeting unmet demand U , instead of observed demand B
has no parallel in the literature.

III. DATA

We use data from a large taxi fleet in Singapore continuously
acquired over a three month period (June 2012 - August 2012)
using telematics installed on each of the fleet’s 16000 taxis. The
1 TB of data we used contains some 1.5 billion taxi records,
where each record stores the taxi id, driver id, time stamp,
speed, latitude, longitude and operational state (FREE - the
taxi is available and looking for a passenger, POB - the taxi
is busy with a passenger, and ONCALL - the taxi is on his
way to fulfill a passenger request made through the booking
system). These states are manually set by the taxi driver via the
taxi’s in-vehicle dispatch unit. Records are logged at discrete
one minute intervals, which allows us to track the minute by
minute position and state of each taxi over the the entire three
month period.

IV. PROBLEM FORMULATION

In this section we formulate the problem, define notation and
state assumptions that allow us to infer unmet taxi demand from
data. Recall that in Section I, we defined the unmet passenger
demand for taxis U as the difference between actual demand
D and observed taxi boardings B. Since it is not possible to
calculate U directly, one simple idea that comes to mind is to
pose unmet demand as the ratio of taxi demand to availability.
This requires us to come up with a reasonable measures for
both that are verifiable from data.

A. Assumptions

We receive a live data stream from each taxi in the form of
a 4-tuple (taxi id, taxi stand id, time period, state).

• taxi id allows us to uniquely identify each taxi
• taxi stand id refers to the virtual taxi stand that the

taxi occupies. The bounds of each taxi stand are clearly
defined, so it is trivial to use the taxi’s latitude and
longitude to identify which taxi stand it is in.

• time period is the discretized time interval in which the
data was received

Fig. 2. A single taxi servicing an urban area contained within virtual taxi stand
P1.

Fig. 3. Two taxis servicing an urban area contained within a single virtual taxi
stand P1.

Fig. 4. Two taxis servicing an urban area contained within a four virtual taxi
stands p = {1, 2, 3, 4}.
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For simplicity, we make the assumption that a taxi’s state
can only take one of two values - FREE and POB. In practice,
we treat the third state ONCALL identically to POB because
the taxi is not available to accept passengers. We further
assume that data is received at exact intervals and that a taxi
cannot share multiple states within within each time period.
For example, if we set the time period to be one minute long,
then our system receives updates at one minute intervals and
will never run into a situation where a taxi updates its status
twice or more per minute. Lastly, we assume that exactly one
passenger boards a taxi. This is assumption is critical because
as explained in Section I, we define the residual queue length as
the number of people (or taxis) less the number of boardings.
If more than one person boards a taxi, this calculation cannot
hold. In real world implementation we approximate the queue
length of people by multiplying the number of boardings B by
1.1, the average number of passengers per taxi trip in Singapore
[34].

B. Taxi Slack

Suppose we want to quantify taxi availability in a city at a
point in time or over a short period of time e.g. 15 minutes.
We introduce the concept of the free taxi minute, a metric
that represents the state of the taxi when available (FREE) in
one minute and show how this can be used to measure taxi
availability. First suppose we partition our city into a single
p = 1 virtual taxi stand P1. Consider a taxi m = 1 (outlined
in black), servicing the urban area completely contained in P1

(Figure 2). The position and state of the taxi is sampled at four
discrete time periods n = {1, 2, 3, 4} (shown in white inside
each circle). The state of the taxi can take one of two values -
FREE (green) and POB (red).

We can completely describe the activity of this taxi with a
1×4 matrix as in Figure 3 where the (m,n)th entry represents
the state of the mth taxi at time n (Figure 5). Let us now add
a second taxi m = 2 (blue) as shown in Figure 3. We can
similarly summarize the activity of both taxis using a 2 × 4
matrix as in Figure 6.

SLACK(M,n′, p′) =
∑
m∈M

FREE(m,n′, p′) (4)

SLACK(M,T, p′) =
∑
t∈T

∑
m∈M

FREE(m, t, p′) (5)

Where

FREE(m,n, p) =

{
1 if the (m,n, p)th entry is FREE
0 otherwise

(6)

By summing the state of each taxi along each column we
can reconstruct a chart of taxi activity. It is easy from Figure
6 to see that taxi availability (as measured by the number of
FREE taxis) peaks at time period n = 3.

Fig. 5. A 1 × 4 matrix that completely summarizes the activity of a single taxi
m = 1 over four discrete time periods n = {1, 2, 3, 4}.

Fig. 6. A 2 × 4 matrix that completely summarizes the activity of two taxis
m = 2 at four discrete time periods n = {1, 2, 3, 4}. By counting the number
of FREE (green) taxis column wise, it is easy to see that taxi availability peaks
at time period n = 3

Fig. 7. A 2 × 4 × 4 matrix that completely summarizes the activity of two
taxis m = 2 in an urban area spanning p = 4 virtual taxi stands over four
discrete time periods n = {1, 2, 3, 4}.
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Finally, we subdivide the city into four virtual taxi stands
p = {1, 2, 3, 4} as in Figure 4 and use the (m,n, p)th entry
of a 2 × 4 × 4 matrix (Figure 7) to represent the state of taxi
m, at time period n in grid p. Again, observe that for a given
grid p, summing the state of each taxi column wise plots a
graph of taxi activity over time. It is easy to see that without
any loss of generality, we can extend our approach to model an
environment with M taxis, N time periods and P virtual taxi
stands using an (M ×N × P ) matrix.

Using the above reasoning, we can now define a measure
of taxi availability or slack for at any given virtual taxi stand
p = p′ for any time period n = n′, by summing over taxis and
counting the number of entries that are FREE (4).

Extending this analysis further, we quantify the availability
SLACK(M,T, p′), or weighted number of free taxis at virtual
taxi stand p = p′ over a time window T , by summing the
number of free taxis at p′ over time periods t ∈ T (5).

Suppose we have 24 hours of data and choose N = 1440 (so
each time interval n is exactly one minute long). If we define a
“taxi minute” to be the number of minutes that a taxi spends in
a particular state and applied (6) to each non null entry in the
(M ×N × P ) matrix, we get the fleet wide total taxi minutes
that are spent FREE. Dividing this number by the total number
of taxis gives us the average time that each taxi spent driving
empty. This calculation is analogous to the man hour, which
is the amount of work performed by the average worker in
one hour. Returning to the example of the taxi stand with high
unmet demand, by carefully defining the boundaries of p′ to
completely cover the taxi stand and its queueing area, we would
find that a high unmet demand taxi stand will generate very few
FREE taxi minutes because whenever a FREE taxi arrives at
the taxi stand, it is immediately “consumed” and turned into
a POB taxi. Conversely, a low unmet demand taxi stand with
many taxis waiting in queue will generate a comparatively large
number of FREE taxi minutes.

C. Taxi Demand
The most straightforward way to quantify taxi demand at

a particular taxi stand is to use B, the number of observed
passenger boardings. A change of state from FREE to POB
indicates that a taxi picked up a passenger. We can use this
fact together with the notation introduced in Section IV-B
to formally define B(M,n′, p′) the number of observed taxi
boardings at a given taxi stand p′ for a particular time period
n′ (7).

B(M,n′, p′) =
∑
m∈M

PICKUP(m,n′, p′) (7)

B(M,T, p′) =
∑
t∈T

∑
m∈M

PICKUP(m, t, p′) (8)

Where

PICKUP(m,n, p) =


1 if the (m,n, p)th entry is POB and

the (m,n− 1, p)th entry is FREE
0 otherwise

(9)

Similarly, B(M,T, p′), the number of observed taxi board-
ings at a given taxi stand p′ for time window T can be found
by summing the number of pickups over time periods t ∈ T
(8).

D. Unmet Demand

Using the results from (5) and (8), we define a heuristic
for unmet demand, ρ(M,T, p′), the unmet demand intensity at
virtual taxi stand p′ over time window T (10).

ρ(M,T, p′) =
B(M,T, p′)

SLACK(M,T, p′)
(10)

The unmet demand intensity ρ is simply the ratio of observed
taxi demand to slack. This captures the imbalance in supply
and demand and as we shall prove in the next section, ρ is a
constant multiple of the ratio of demand to residual taxi queue
length, D

S−B , of our virtual taxi stand.

V. ANALYSIS

To motivate our analysis, let us consider the dynamics of
a single taxi stand over τ discrete time periods i.e. t =
{1, 2, ..., τ}. Taxis and people arrive deterministically at the
taxi stand with unknown rates λT and λP and are instantly
serviced (when a passenger boards a taxi) with observed rate
µ. For simplicity, we assume that there is an excess supply of
taxis so µ ≤ λP ≤ λT and that at time t = 1, the taxi stand is
completely empty. Our goal is to use this information to find
D

S−B , the ratio of taxi demand D to residual taxi queue length
S −B.

Lemma V.1. The total passenger demand for taxis D over τ
time periods is τλP = τµ.

Proof. The proof follows from the definition of arrival rate λ.
By assuming deterministic arrivals, exactly λP people arrive
at the taxi stand in each time period. Then after τ time
periods, exactly τλP people would have arrived. Because taxis
in excess, each them would have been matched with a taxi with
rate µ i.e. observed demand B is equal to actual demand D.
The total demand for taxis D is then τµ, which is equal to total
passenger arrivals τλP .

Lemma V.2. The total amount of SLACK (free taxi minutes)
generated over τ time periods is 1

2τ
2(λT − λP ).

Proof. The number of free taxi minutes generated by a taxi in
queue is equivalent to its waiting time. Taxis arrive with rate
λT and are serviced at rate µ = λP . Since λP ≤ λT , the queue
of taxis accumulates at rate λT −λP . After τ time periods, the
expected queue length of taxis is τ(λT − λP ) and the total
delay experienced in queue is the area of a triangle of base τ
and height τ(λT − λP ), which is equal to 1

2τ
2(λT − λP ).
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Theorem V.1. ρ is a constant factor approximation of the
ratio of taxi demand D to residual taxi queue length S −B.

Proof.

ρ =
B

SLACK
(from 10)

=
τµ

1
2τ

2(λT − λP )
(from V.2)

=
τλP

1
2τ

2(λT − λP )
(from V.1)

=
2τλP

τ2(λT − λP )

=
2

τ
· τλP
τλT − τλP

=
2

τ
· D

S −B

But why not find λT directly from data to calculate ρ? It
turns out that while this is simple in the case of a single virtual
taxi stand where you can check if a taxi has just entered the taxi
stand’s boundary, it is difficult to do for multiple taxi stands for
many taxis, particularly when you have the added constraint in
Section VII that ρ must be calculated in realtime.

VI. DISCUSSION

It is important to note that our heuristic for unmet demand
is arbitrary. Unlike a metric such as average wait time or
queue length, unmet demand intensity ρ does not represent
a real world quantity. A higher ρ simply means that there
is more demand pressure and it is harder for a passenger
to find an available taxi, ceteris paribus. This result can be
viewed in two ways. By keeping T constant and comparing ρ
across different taxi stands {p1, p2, ..., pP }, we can visualize
how unmet demand is spatially distributed at a particular point
in time. Alternatively, by varying T , we can see how unmet
demand at a specific taxi stand p′ changes over time.

To illustrate this we conducted a simple experiment where
we defined each virtual taxi stand as a square 2km by 2km
grid overlaid on the the urban environment of Singapore.
We discretized time by setting N = 1440, intervals t =
{1, 2, ..., 1440} to be one minute long and time windows
T = {[1, 2, ..., 15], [16, 17, ..., 30], ..., [1426, 1427, ..., 1440]} to
be 15 minutes long. Using data from M = 16000 taxis, we
calculated values for slack and boarding for P = 1144 virtual
taxi stands.

A. Unmet Demand Comparison over Space

We normalized the ρ at each virtual taxi stand to obtain a
heat map of unmet demand for each 15 minute time window
(Figure 8). The heuristic correctly picks out unmet demand in
high density, high income residential areas in the mornings and
the central business district in the evenings.

Fig. 8. A map of unmet taxi demand trained on data from 18:00 - 18:15 hrs on
a Wednesday. As expected, the map shows hotspots of unmet demand forming
in the central business district and other high density office districts as people
leave work for home.

B. Unmet Demand Comparison over Time

Even though the grids defining our virtual taxi stands were
arbitrarily chosen, several correspond to well defined neigh-
borhoods in Singapore and are thus able to capture their
characteristic taxi activity. Figure 9 shows how unmet demand
varies at Orchard Road, a high end shopping and residential
area on a Friday. In the mornings, unmet demand spikes briefly
as high income residents (predominately expatriates) take taxis
to work. Another peak can be seen during the evening rush
hour as shoppers and office workers take taxis to return home.

Fig. 9. Unmet demand at Orchard Road on a typical Friday. Two peaks are
observed - one in the morning at about 8 am and another in the evening at 7
pm. This behavior is consistent with general taxi patterns in that neighborhood.

VII. SMARTPHONE APP AND RECOMMENDATION ENGINE

In this section, we explain how the unmet demand heuristic
described in Section IV-D can be used to build a recommen-
dation engine and smartphone application that uses a real time
stream of taxi probe data to direct participating drivers to areas
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of high unmet demand. The recommendation engine connects
to a live data stream (a time ordered sequence of data in the
format specified in Section IV-A) and uses this data to calculate
at instant t, the unmet demand at each virtual taxi stand during
the interval [t − 15, t − 1]. Our smartphone application then
ranks and displays these results to drivers in a convincing and
accessible way so that they can easily find nearby hotspots of
unmet demand.

Fig. 10. Unmet demand app showing (left) driving directions to the nearest
unmet demand hotspot and (right) unmet demand at individual taxi stands

A. Recommendation Engine

To store and manipulate data received by the live stream, we
implement the three dimensional M × N × P data structure
described in Section IV-B in a relational database. Each row in
the database corresponds to a taxi minute record with column
attributes taxi id (M), time period (N), taxi stand id (P) and
an extra column for state. Each taxi stand id refers to a virtual
taxi stand created by a grid mesh superimposed on a map of
the city at three zoom levels - high (0.5 km x 0.5 km), medium
(1.0 km x 1.0 km) and low (2.0 km x 2.0 km).

At one minute intervals, a background task retrieves records
received in the last 15 minutes and applies (10) on each taxi
stand to calculate its unmet demand intensity on a sliding 15
minute time window. Concretely, this means that at time t,
the recommendation engine calculates ρ({t− 15, t− 14, ..., t−
1}, p) ∀p = {1, 2, ..., 1444}. This result is stored in a separate
high fidelity database as a 3-tuple (taxi stand id, time period,
unmet demand) where it is exposed via API to our smartphone
application.

B. Smartphone Application

Our smartphone application is designed to show taxi drivers
the location of nearby unmet demand hotspots in a clear and
visually intuitive way. At regular one minute intervals, the

application sends a request to the recommendation engine,
specifying the current time and location of the user. The engine
uses this information to return a list of virtual taxi stands and
their unmet demand intensity from the previous 15 minutes.

The top half of the app (Figure 10 left) displays a grid overlay
of each virtual taxi stand, color coded by normalized unmet
demand intensity (darker grids have a higher intensity). The
bottom half of the app shows a listing of the top 3 taxi stands
within a 15, 30 and 45 minute driving radius together with their
unmet demand intensity normalized on a 1 - 10 scale. Instead of
simply displaying the taxi stand id, we name these virtual taxi
stands according to the general area that best describes the taxi
stand’s location. This allows users to easily compare relative
unmet demand between different neighborhoods, so that they
can quickly decide where to go. Clicking on a taxi stand’s name
brings up driving directions from the user’s current location to
that taxi stand.

At the lowest resolution, the heat map identifies areas of
high unmet demand. As you zoom in, the map automatically
subdivides into smaller grids and at the highest resolution, it
correctly picks out individual taxi stands (Figure 10 right).

An interesting feature of our system is that it has a built
in real time control policy that limits too many taxis from
converging on a single taxi stand. As more taxis enter a high
unmet demand area, they collectively generate large amounts of
FREE taxi minutes. As demand clears, less observed boardings
are generated. Both of these factors put downward pressure on
the unmet demand intensity so the taxi stand no longer appears
as a hot spot, and new taxis no longer have an incentive to go
there.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we examine the problem of inferring unmet
passenger demand for taxis. We formalized the notion of unmet
demand in our problem context and present a novel heuristic
algorithm to estimate it without any information on passenger
queue lengths or arrival rates. Along the way, we introduce the
concept of the FREE taxi minute and show how it can be used
to to quantify slack, the general availability of taxis.

Our heuristic, the unmet demand intensity ρ (10), is the
ratio of observed taxi demand to slack. We show that ρ is
a constant factor approximation of the ratio of taxi demand
D to residual taxi queue length S − B and test it using real
world taxi data from Singapore with promising early results.
The algorithm correctly captures unmet demand at different
locations and times of day.

Finally, we develop a recommendation engine and smart-
phone application that balances fleet wide supply and demand
by directing taxi drivers to nearby hotspots of unmet demand.
We describe the architecture and technical details of this system
and show how it uses a stream of real time taxi probe data
to calculate citywide unmet demand in an online way. This
information is displayed on a smartphone app that allows taxi
drivers to easily identify nearby unmet demand hotspots.

This work is a first step towards a real time control system
to match supply and demand in a city. Unlike competing
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approaches, we do this by considering unmet demand, rather
than just observed demand. In future work, we plan to test
the performance of our system in a small scale fleet test in
Singapore. We believe that the deployment of such a system
in a taxi fleet will increase the productivity and utilization of
the fleet by improving the distribution of the vacant vehicles
throughout a city.
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